出處:http://blog.csdn.net/leo9150285/article/details/8271910
直接上程序
程序1:采用新线程派驻的通知方式
- #include <stdio.h>
- #include <signal.h>
- #include <time.h>
- #include <string.h>
- #include <stdlib.h>
- #include <unistd.h>
- #define CLOCKID CLOCK_REALTIME
- void timer_thread(union sigval v)
- {
- printf(“timer_thread function! %dn”, v.sival_int);
- }
- int main()
- {
- // XXX int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid);
- // clockid–值:CLOCK_REALTIME,CLOCK_MONOTONIC,CLOCK_PROCESS_CPUTIME_ID,CLOCK_THREAD_CPUTIME_ID
- // evp–存放环境值的地址,结构成员说明了定时器到期的通知方式和处理方式等
- // timerid–定时器标识符
- timer_t timerid;
- struct sigevent evp;
- memset(&evp, 0, sizeof(struct sigevent)); //清零初始化
- evp.sigev_value.sival_int = 111; //也是标识定时器的,这和timerid有什么区别?回调函数可以获得
- evp.sigev_notify = SIGEV_THREAD; //线程通知的方式,派驻新线程
- evp.sigev_notify_function = timer_thread; //线程函数地址
- if (timer_create(CLOCKID, &evp, &timerid) == -1)
- {
- perror(“fail to timer_create”);
- exit(-1);
- }
- // XXX int timer_settime(timer_t timerid, int flags, const struct itimerspec *new_value,struct itimerspec *old_value);
- // timerid–定时器标识
- // flags–0表示相对时间,1表示绝对时间
- // new_value–定时器的新初始值和间隔,如下面的it
- // old_value–取值通常为0,即第四个参数常为NULL,若不为NULL,则返回定时器的前一个值
- //第一次间隔it.it_value这么长,以后每次都是it.it_interval这么长,就是说it.it_value变0的时候会装载it.it_interval的值
- struct itimerspec it;
- it.it_interval.tv_sec = 1;
- it.it_interval.tv_nsec = 0;
- it.it_value.tv_sec = 1;
- it.it_value.tv_nsec = 0;
- if (timer_settime(timerid, 0, &it, NULL) == -1)
- {
- perror(“fail to timer_settime”);
- exit(-1);
- }
- pause();
- return 0;
- }
- /*
- * int timer_gettime(timer_t timerid, struct itimerspec *curr_value);
- * 获取timerid指定的定时器的值,填入curr_value
- *
- */
程序2:通知方式为信号的处理方式
- #include <stdio.h>
- #include <time.h>
- #include <stdlib.h>
- #include <signal.h>
- #include <string.h>
- #include <unistd.h>
- #define CLOCKID CLOCK_REALTIME
- void sig_handler(int signo)
- {
- printf(“timer_signal function! %dn”, signo);
- }
- int main()
- {
- // XXX int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);
- // signum–指定的信号编号,可以指定SIGKILL和SIGSTOP以外的所有信号编号
- // act结构体–设置信号编号为signum的处理方式
- // oldact结构体–保存上次的处理方式
- //
- // struct sigaction
- // {
- // void (*sa_handler)(int); //信号响应函数地址
- // void (*sa_sigaction)(int, siginfo_t *, void *); //但sa_flags为SA——SIGINFO时才使用
- // sigset_t sa_mask; //说明一个信号集在调用捕捉函数之前,会加入进程的屏蔽中,当捕捉函数返回时,还原
- // int sa_flags;
- // void (*sa_restorer)(void); //未用
- // };
- //
- timer_t timerid;
- struct sigevent evp;
- struct sigaction act;
- memset(&act, 0, sizeof(act));
- act.sa_handler = sig_handler;
- act.sa_flags = 0;
- // XXX int sigaddset(sigset_t *set, int signum); //将signum指定的信号加入set信号集
- // XXX int sigemptyset(sigset_t *set); //初始化信号集
- sigemptyset(&act.sa_mask);
- if (sigaction(SIGUSR1, &act, NULL) == -1)
- {
- perror(“fail to sigaction”);
- exit(-1);
- }
- memset(&evp, 0, sizeof(struct sigevent));
- evp.sigev_signo = SIGUSR1;
- evp.sigev_notify = SIGEV_SIGNAL;
- if (timer_create(CLOCK_REALTIME, &evp, &timerid) == -1)
- {
- perror(“fail to timer_create”);
- exit(-1);
- }
- struct itimerspec it;
- it.it_interval.tv_sec = 2;
- it.it_interval.tv_nsec = 0;
- it.it_value.tv_sec = 1;
- it.it_value.tv_nsec = 0;
- if (timer_settime(timerid, 0, &it, 0) == -1)
- {
- perror(“fail to timer_settime”);
- exit(-1);
- }
- pause();
- return 0;
- }